Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 809: 151106, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34688735

RESUMEN

Global land-use changes and rapid infrastructure development necessitate identification and conservation of wildlife corridors. Connectivity through corridors is shaped by species' structural, ecological and behavioral constraints. In multi-use landscapes, species' interactions with humans could additionally influence connectivity. Using the tiger Panthera tigris as a case study, we make simultaneous assessments of potential connectivity, habitat use and examine their links with the species' negative interactions with humans in central India. We assessed potential connectivity across 10, 000 sq. km of the Kanha-Pench forest corridor using graph-theoretic methods. Combining indirect sign surveys and occupancy models, we examined habitat use, and evaluated its congruence with potential connectivity. Next, we estimated spatial probabilities of livestock depredation through application of multi-state occupancy models to interview-based survey data from local residents. Habitat use by tigers was negatively associated with forest fragmentation and anthropogenic disturbance. Livestock depredation was positively associated with size of settlements and areas most frequented by tigers, and negatively with anthropogenic disturbance within forests. We found high congruence between connectivity and habitat use (r = 0.80); but the strong correlation did not hold in areas with very high levels of livestock depredation levels. Our results indicate that when areas of high use by tigers are constrained by limited connectivity, there are higher chances of human-tiger conflict, and these areas may be ecological traps for the species. Interactions with humans can be crucial in mediating connectivity for large carnivores in shared habitats. Our findings present an opportunity to consolidate areas where carnivore conservation and local livelihood needs can be balanced. Our framework also provides a foundation for spatial prioritization that incorporates a plurality of dimensions, with utility for connectivity conservation of other wide-ranging carnivores.


Asunto(s)
Tigres , Animales , Efectos Antropogénicos , Conservación de los Recursos Naturales , Ecosistema , Bosques , Humanos
2.
R Soc Open Sci ; 6(5): 182008, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31218031

RESUMEN

Many carnivores inhabit human-dominated landscapes outside protected reserves. Spatially explicit assessments of carnivore distributions and livestock depredation patterns in human-use landscapes are crucial for minimizing negative interactions and fostering coexistence between people and predators. India harbours 23% of the world's carnivore species that share space with 1.3 billion people in approximately 2.3% of the global land area. We examined carnivore distributions and human-carnivore interactions in a multi-use forest landscape in central India. We focused on five sympatric carnivore species: Indian grey wolf Canis lupus pallipes, dhole Cuon alpinus, Indian jackal Canis aureus indicus, Indian fox Vulpes bengalensis and striped hyena Hyaena hyaena. Carnivore occupancy ranged from 12% for dholes to 86% for jackals, mostly influenced by forests, open scrublands and terrain ruggedness. Livestock/poultry depredation probability in the landscape ranged from 21% for dholes to greater than 95% for jackals, influenced by land cover and livestock- or poultry-holding. The five species also showed high spatial overlap with free-ranging dogs, suggesting potential competitive interactions and disease risks, with consequences for human health and safety. Our study provides insights on factors that facilitate and impede co-occurrence between people and predators. Spatial prioritization of carnivore-rich areas and conflict-prone locations could facilitate human-carnivore coexistence in shared habitats. Our framework is ideally suited for making socio-ecological assessments of human-carnivore interactions in other multi-use landscapes and regions, worldwide.

3.
Sci Rep ; 9(1): 3081, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816170

RESUMEN

Most large carnivore populations currently occur in heterogeneous landscapes, with source populations embedded in a matrix of human-dominated habitats. Understanding changes in distribution of endangered carnivores is critical for prioritizing and implementing conservation strategies. We examined distribution and dynamics of a dhole Cuon alpinus metapopulation, first in 2007 and subsequently in 2015, based on indirect sign surveys across 37, 000sq. km of India's Western Ghats. Predicted dhole occupancy declined from 0.62 (95% CI: 0.58-0.66) in 2007 to 0.54 (95% CI: 0.50-0.58) in 2015. Occupancy was associated with abundance of primary prey species and anthropogenic disturbance. Local extinction appeared to be influenced by forest cover loss, and offset by protected reserves; colonization was influenced by occupancy in neighbouring sites. Perturbation analysis indicated that occupancy was more sensitive to local extinction within reserves and to colonization in sites abutting reserves. The Western Ghats could serve as a stronghold for the endangered dhole, provided future colonizations are facilitated through habitat consolidation beyond reserve boundaries, and local extinctions are prevented by increasing protection efforts within select reserves. We advocate for wildlife managers to adopt a landscape-based approach and periodic monitoring to ensure persistence of the dhole metapopulation in Western Ghats, and in other critical conservation regions across the species' geographic range.


Asunto(s)
Animales Salvajes , Canidae , Especies en Peligro de Extinción/estadística & datos numéricos , Animales , Bosques , India , Modelos Biológicos , Dinámica Poblacional/estadística & datos numéricos
4.
Ecol Evol ; 8(20): 10336-10344, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30397470

RESUMEN

With continued global changes, such as climate change, biodiversity loss, and habitat fragmentation, the need for assessment of long-term population dynamics and population monitoring of threatened species is growing. One powerful way to estimate population size and dynamics is through capture-recapture methods. Spatial capture (SCR) models for open populations make efficient use of capture-recapture data, while being robust to design changes. Relatively few studies have implemented open SCR models, and to date, very few have explored potential issues in defining these models. We develop a series of simulation studies to examine the effects of the state-space definition and between-primary-period movement models on demographic parameter estimation. We demonstrate the implications on a 10-year camera-trap study of tigers in India. The results of our simulation study show that movement biases survival estimates in open SCR models when little is known about between-primary-period movements of animals. The size of the state-space delineation can also bias the estimates of survival in certain cases.We found that both the state-space definition and the between-primary-period movement specification affected survival estimates in the analysis of the tiger dataset (posterior mean estimates of survival ranged from 0.71 to 0.89). In general, we suggest that open SCR models can provide an efficient and flexible framework for long-term monitoring of populations; however, in many cases, realistic modeling of between-primary-period movements is crucial for unbiased estimates of survival and density.

5.
Ecol Evol ; 8(15): 7312-7322, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151151

RESUMEN

When sighting-based surveys to estimate population densities of large herbivores in tropical dense forests are not practical or affordable, surveys that rely on animal dung are sometimes used. This study tested one such dung-based method by deriving population densities from observed dung densities of six large herbivores (chital, elephant, gaur, muntjac, sambar, and wild pig) in two habitats, dry deciduous forests (DDF) and moist deciduous forests (MDF), within Nagarahole National Park, southern India. Using the program DUNGSURV, dung pile counts, decay rates estimated from field experiments, and defecation rates derived from literature were analyzed together by a model that allows for random events affecting dung decay. Densities of chital were the highest, followed by sambar. Wild pig densities were similar in the two habitats, sambar densities were higher in DDF, and densities of the other species were higher in MDF than in DDF. We compared DUNGSURV estimates with densities estimated using distance sampling in the same season. DUNGSURV estimates were substantially higher for all species in both habitats. These differences highlight the challenges that researchers face in computing unbiased estimates of dung decay rates and in relying on defecation rates from literature. Besides the elephant, this study is the first to rigorously test the efficacy of using a dung-based approach to estimate densities of large herbivore species in Asia, and based on this evaluation, we provide specific recommendations to address issues that require careful consideration before observed dung densities are used to derive animal densities. Our results underline the need for an experimental study of a known population in a fenced reserve to validate the true potential of using dung-based approaches to estimate population densities.

6.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179511

RESUMEN

Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds.


Asunto(s)
Ecosistema , Panthera/clasificación , Simpatría , Animales , Bosques , India , Análisis Espacio-Temporal
7.
Conserv Biol ; 30(3): 639-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27153529

RESUMEN

Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km(2) with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km(2) , abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Aplicación de la Ley , Tigres , Animales , Asia Sudoriental , Teorema de Bayes , Humanos , India , Funciones de Verosimilitud , Dinámica Poblacional , Tailandia
8.
PLoS One ; 10(11): e0142647, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26556229

RESUMEN

There is increasing evidence of large carnivore presence outside protected areas, globally. Although this spells conservation success through population recoveries, it makes carnivore persistence in human-use landscapes tenuous. The widespread distribution of leopards in certain regions of India typifies this problem. We obtained information on leopard-human interactions at a regional scale in Karnataka State, India, based on systematic surveys of local media reports. We applied an innovative occupancy modelling approach to map their distribution patterns and identify hotspots of livestock/human depredation. We also evaluated management responses like removals of 'problem' leopards through capture and translocations. Leopards occupied around 84,000 km2 or 47% of the State's geographic area, outside designated national parks and wildlife sanctuaries. Their presence was facilitated by extent of vegetative cover- including irrigated croplands, rocky escarpments, and prey base in the form of feral and free-ranging dogs. Higher probabilities of livestock/human attacks by leopards were associated with similar ecological features as well as with capture/removals of leopards. Of the 56 cases of leopard removals reported, 91% did not involve human attacks, but followed livestock predation or only leopard sightings. The lack of knowledge on leopard ecology in human-use areas has resulted in unscientific interventions, which could aggravate the problem rather than mitigating it. Our results establish the presence of resident, breeding leopards in human-use areas. We therefore propose a shift in management focus, from current reactive practices like removal and translocation of leopards, to proactive measures that ensure safety of human lives and livelihoods.


Asunto(s)
Conservación de los Recursos Naturales , Panthera , Animales , Animales Salvajes , Conservación de los Recursos Naturales/estadística & datos numéricos , Perros , Ecosistema , Humanos , India , Funciones de Verosimilitud , Ganado , Medios de Comunicación de Masas , Modelos Estadísticos , Panthera/fisiología , Dinámica Poblacional/estadística & datos numéricos , Conducta Predatoria
9.
PLoS One ; 10(7): e0133233, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26207378

RESUMEN

Understanding species distribution patterns has direct ramifications for the conservation of endangered species, such as the Asian elephant Elephas maximus. However, reliable assessment of elephant distribution is handicapped by factors such as the large spatial scales of field studies, survey expertise required, the paucity of analytical approaches that explicitly account for confounding observation processes such as imperfect and variable detectability, unequal sampling probability and spatial dependence among animal detections. We addressed these problems by carrying out 'detection--non-detection' surveys of elephant signs across a c. 38,000-km(2) landscape in the Western Ghats of Karnataka, India. We analyzed the resulting sign encounter data using a recently developed modeling approach that explicitly addresses variable detectability across space and spatially dependent non-closure of occupancy, across sampling replicates. We estimated overall occupancy, a parameter useful to monitoring elephant populations, and examined key ecological and anthropogenic drivers of elephant presence. Our results showed elephants occupied 13,483 km(2) (SE = 847 km(2)) corresponding to 64% of the available 21,167 km(2) of elephant habitat in the study landscape, a useful baseline to monitor future changes. Replicate-level detection probability ranged between 0.56 and 0.88, and ignoring it would have underestimated elephant distribution by 2116 km(2) or 16%. We found that anthropogenic factors predominated over natural habitat attributes in determining elephant occupancy, underscoring the conservation need to regulate them. Human disturbances affected elephant habitat occupancy as well as site-level detectability. Rainfall is not an important limiting factor in this relatively humid bioclimate. Finally, we discuss cost-effective monitoring of Asian elephant populations and the specific spatial scales at which different population parameters can be estimated. We emphasize the need to model the observation and sampling processes that often obscure the ecological process of interest, in this case relationship between elephants to their habitat.


Asunto(s)
Ecosistema , Elefantes , Especies en Peligro de Extinción , Altitud , Distribución Animal , Animales , Conducta Animal , Clima , Conservación de los Recursos Naturales , Fenómenos de Retorno al Lugar Habitual , India , Densidad de Población , Estaciones del Año , Encuestas y Cuestionarios
10.
PLoS One ; 9(6): e98803, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24893166

RESUMEN

Although they play a critical role in shaping ecological communities, many threatened predator species are data-deficient. The Dhole Cuon alpinus is one such rare canid with a global population thought to be <2500 wild individuals. We assessed habitat occupancy patterns of dholes in the Western Ghats of Karnataka, India, to understand ecological and anthropogenic determinants of their distribution and habitat-use. We conducted spatially replicated detection/non-detection surveys of dhole signs along forest trails at two appropriate scales: the entire landscape and a single wildlife reserve. Landscape-scale habitat occupancy was assessed across 38,728 km(2) surveying 206 grid cells of 188-km(2) each. Finer scale habitat-use within 935 km2 Bandipur Reserve was studied surveying 92 grid cells of 13-km(2) km each. We analyzed the resulting data of dhole signs using likelihood-based habitat occupancy models. The models explicitly addressed the problematic issue of imperfect detection of dhole signs during field surveys as well as potential spatial auto-correlation between sign detections made on adjacent trail segments. We show that traditional 'presence versus absence' analyses underestimated dhole habitat occupancy by 60% or 8682 km2 [naïve = 0.27; ψL(SE)  = 0.68 (0.08)] in the landscape. Addressing imperfect sign detections by estimating detection probabilities [p(t)(L) (SE) = 0.12 (0.11)] was critical for reliable estimation. Similar underestimation occurred while estimating habitat-use probability at reserve-scale [naïve = 0.39; Ψs(SE) = 0.71 (0.06)]. At landscape scale, relative abundance of principal ungulate prey primarily influenced dhole habitat occupancy. Habitat-use within a reserve, however, was predominantly and negatively influenced by anthropogenic disturbance. Our results are the first rigorous assessment of dhole occupancy at multiple spatial scales with potential conservation value. The approach used in this study has potential utility for cost-effectively assessing spatial distribution and habitat-use in other species, landscapes and reserves.


Asunto(s)
Canidae , Ecología , Ecosistema , Animales , Monitoreo del Ambiente , India
12.
Ecol Appl ; 20(5): 1456-66, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20666261

RESUMEN

Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.


Asunto(s)
Tigres , Animales , Análisis por Conglomerados , India
13.
Ecology ; 90(11): 3233-44, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19967878

RESUMEN

We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.


Asunto(s)
Demografía , Modelos Biológicos , Tigres/fisiología , Grabación en Video , Animales , Teorema de Bayes , Cadenas de Markov , Método de Montecarlo
14.
Biol Lett ; 5(3): 383-6, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19324633

RESUMEN

The tiger is one of many species in which individuals can be identified by surface patterns. Camera traps can be used to record individual tigers moving over an array of locations and provide data for monitoring and studying populations and devising conservation strategies. We suggest using a combination of algorithms to calculate similarity scores between pattern samples scanned from the images to automate the search for a match to a new image. We show how using a three-dimensional surface model of a tiger to scan the pattern samples allows comparison of images that differ widely in camera angles and body posture. The software, which is free to download, considerably reduces the effort required to maintain an image catalogue and we suggest it could be used to trace the origin of a tiger skin by searching a central database of living tigers' images for matches to an image of the skin.


Asunto(s)
Sistemas de Identificación Animal/métodos , Piel/anatomía & histología , Tigres/anatomía & histología , Animales , Conservación de los Recursos Naturales , Crimen , Modelos Biológicos , Fotograbar , Pigmentos Biológicos
15.
Ecology ; 87(11): 2925-37, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17168036

RESUMEN

Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.


Asunto(s)
Sistemas de Identificación Animal/métodos , Modelos Biológicos , Fotograbar/métodos , Tigres/fisiología , Animales , India , Densidad de Población , Dinámica Poblacional , Análisis de Supervivencia , Factores de Tiempo
16.
Proc Natl Acad Sci U S A ; 101(14): 4854-8, 2004 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15041746

RESUMEN

The goal of ecology is to understand interactions that determine the distribution and abundance of organisms. In principle, ecologists should be able to identify a small number of limiting resources for a species of interest, estimate densities of these resources at different locations across the landscape, and then use these estimates to predict the density of the focal species at these locations. In practice, however, development of functional relationships between abundances of species and their resources has proven extremely difficult, and examples of such predictive ability are very rare. Ecological studies of prey requirements of tigers Panthera tigris led us to develop a simple mechanistic model for predicting tiger density as a function of prey density. We tested our model using data from a landscape-scale long-term (1995-2003) field study that estimated tiger and prey densities in 11 ecologically diverse sites across India. We used field techniques and analytical methods that specifically addressed sampling and detectability, two issues that frequently present problems in macroecological studies of animal populations. Estimated densities of ungulate prey ranged between 5.3 and 63.8 animals per km2. Estimated tiger densities (3.2-16.8 tigers per 100 km2) were reasonably consistent with model predictions. The results provide evidence of a functional relationship between abundances of large carnivores and their prey under a wide range of ecological conditions. In addition to generating important insights into carnivore ecology and conservation, the study provides a potentially useful model for the rigorous conduct of macroecological science.


Asunto(s)
Carnívoros/fisiología , Conducta Predatoria , Animales , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...